If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-2000=0
a = 2; b = 0; c = -2000;
Δ = b2-4ac
Δ = 02-4·2·(-2000)
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{10}}{2*2}=\frac{0-40\sqrt{10}}{4} =-\frac{40\sqrt{10}}{4} =-10\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{10}}{2*2}=\frac{0+40\sqrt{10}}{4} =\frac{40\sqrt{10}}{4} =10\sqrt{10} $
| t+16=50 | | 6x–1=4x+12 | | 80/72=10/x | | (3x+8)+(11x+4)=180 | | 8*32^(-x)=64^(3x) | | 32=1/2(x) | | 3(k-3.8)=-4.2(k-3.9) | | -12x+16-4x=-112 | | 6*0.3+x*0.6=4 | | 6*0.1+x*0.2=4 | | 5x+4=53(x+1) | | 3x15=6x+3 | | 18x45-5x+92=84 | | 2x^2-8x=31 | | 3x-12=7x–24 | | 34=16+z | | 4½r+7=70= | | -3(2x-4)+8x=2x-12 | | 2z-14=5z-24 | | n=2+0.12/2.4 | | (10x+25)+(12x+7)=270 | | 2.4n-0.12=4.8= | | 684+x=12 | | 5x-2+2x-3=90 | | (5x+2)=(10x-3)=(7x-11) | | 12+x=684 | | 684x=12 | | 9.9n=115 | | 4+n/5=6 | | 7x+6–=2x+4 | | 11y-6+63=90 | | 3x-2-10+6x=4x |